Internet-based 3D PET Image Reconstruction using
A Beowulf PC Cluster

'D Shattuck, ¥J. Rapela, fE. Asma, *A. Chatziioannou, TJ. Qi, fR. Leahy
tSignal and Image Processing Institute, Univ. of Southern California, Los Angeles, CA 90089
*Crump Institute for Molecular Imaging, University of California, Los Angeles CA90095
fCenter for Functional Imaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Abstract— We describe an approach to fast iterative re-
construction from fully 3D PET data using a network of
PentiumIII PCs configured as a Beowulf cluster. To facili-
tate the use of this system, we have developed a browser-
based interface using Java. The system compresses PET
data on the user’s machine, sends this data over a network,
and instructs the PC cluster to reconstruct the image. The
cluster implements a parallelized version of our precondi-
tioned conjugate gradient method for fully 3D MAP image
reconstruction. We report on the speed-up factors using the
Beowulf approach and the impacts of communication laten-
cies in the local cluster network and the network connection
between the user’s machine and our PC cluster.

Keywords— 3D PET, Beowulf cluster, distributed comput-
ing, iterative reconstruction

I. INTRODUCTION

Iterative reconstruction of clinical PET images using sta-
tistically optimal algorithms can require an hour or more
of computation on a single-processor computer for fully 3D
data sets. Dramatic reductions in computation time have
been achieved by converting fully 3D data sets to 2D us-
ing rebinning algorithms and then using iterative 2D re-
construction methods [1]. Further reductions have been
achieved using the ordered-subsets EM (OSEM) algorithm
which can achieve acceptable results in just a few passes
through the data. However, these speed-ups are achieved
at a price: the rebinning methods, even if exact for true
line integrals, are unable to accurately model the true phys-
ical response of the scanner. Similarly, the OSEM method
never optimizes the likelihood objective function and the
results can be highly dependent on the number of subsets
and number of iterations that are used. In our work [3],
[2] we have concentrated on using convergent algorithms
to compute maximum a posteriori (MAP) or equivalently
penalized-ML solutions to the PET reconstruction prob-
lem. The more accurate models that we use with fully 3D
data sets have been shown to improve image resolution [3]
but inevitably lead to longer computation times.

Our approach to reducing reconstruction time is to use
rapidly converging methods such as the preconditioned
conjugate gradient method. Further reductions can be
obtained using multiprocessor computing. Previously we
have used multithreading methods to parallelize the code
across multiple CPUs in a single symmetric multiproces-

This work was supported by the National Cancer Institute under
Grant No. R01 CA59794 and the National Foundation for Functional
Brain Imaging.

sor (SMP) server. This arrangement is attractive since the
servers typically have shared memory and hence there is
minimal overhead incurred in distributing data across the
processors. In tests with a four processor server, we were
able to achieve speed-up factors of approximately 3.4 rel-
ative to a single processor. Unfortunately, the number of
processors in standard servers is usually limited to four and
the cost is high relative to single or dual processor systems.
For this reason we have recently investigated the use of a
Beowulf PC cluster that allows us to use a large number
of low cost systems to achieve substantial speed-up relative
to a single computer. Vollmar et al [5] recently reported
the use of a PC cluster for 3D PET reconstruction. Their
approach differs from that described here in that the for-
ward and backprojection were based on on-the-fly compu-
tation rather than a precalculated system matrix. Similarly
Labbe et al [6] present a set of forward and backprojection
operators suitable for cluster and parallel computing but
again these are based on on-the-fly computation.

The Beowulf cluster is simply a network of Unix or Linux
workstations. For the purposes of code parallelization, the
cluster is configured with a head-node that controls the
program and a set of worker-nodes that handle processes
spawned by the head node. The difference between the
Beowulf cluster and a multiple CPU server is that the for-
mer do not have shared memory, and data must be trans-
ferred via a local ethernet between processors. This is of-
ten the bottleneck in performance of these clusters and of
particular importance in PET image reconstruction where
the data sets and image volumes are large. Here we re-
port on our progress using a combination of multithreading
and distributed computing on a Beowulf cluster consisting
of 9 dual 933MHz PentiumlIII computers connected via a
100mb/s switched ethernet.

A second goal of our work was to decouple the computer
used for reconstruction from that used to acquire data. To
do this we have developed a web-browser based interface
to our distributed computing code using Java. Thus data
can be processed using the cluster from any computer con-
nected to the Internet. While data transfer may be slow for
standard Internet connections, the availability of Internet2
connections at many research facilities make this approach
viable. We report on an experiment we have performed by
reconstructing data residing on the PET system computers
in the Nuclear Medicine clinic at UCLA using the cluster
at the Signal and Image Processing Institute at USC.

II. METHODS
A. MAP Image Reconstruction

We use a MAP estimation algorithm to reconstruct PET
images [3]. In this approach, the data are modeled as:

y=Px+T+5 (1)

where y is the mean of the data, x is the source distribu-
tion, T is the mean of the randoms, and s is the mean of
the scattered events. P is the system matrix describing the
probability that an event is detected, which we factor as:

P= PnormelurPattnPgeom (2)

where Pgeom is the geometric projection matrix describing
the probability that a photon pair reaches the front faces of
detector pair in the absence of attenuation and assuming
perfect photon pair colinearity, Pplar models photon pair
non-colinearity, inter-crystal scatter and crystal penetra-
tion, Pagen contains attenuation correction factors for each
detector pair, and Pyorm is a diagonal matrix containing
the normalization factors.

Reconstructions are computed as the maximizer of a pos-
terior probability equal to the sum of the log-likelihood of
the data, y, conditioned on the image, x, and the log-prior,
which has the form of a Gibbs energy function:

In p(ylx) = Xy +viln(@)}
- Ej ZkeNj ki V(z; — xr) (3)
k>

where V' (z) is the potential function.

As in our previous work on PET image reconstruction, a
preconditioned conjugate-gradient algorithm was used for
optimization. In particular, the following preconditioned
Polak-Ribiere form of conjugate gradient method was used.

R B N I 0 (4)
s = g 4 gDl (5)
g Cn g (6)

() _ gln—1)yq(n)

g(n—1'd(n-1)
The PCG algorithm is initialized with s(© = d(© and
iteratively computes the conjugate directions. It it neces-
sary to check that s(®) is an ascent direction. In the case
that s g(™ <0, s(® is a descent direction and the algo-
rithm is reinitialized with s(®) = d(™. The step size, a(™,
is computed at each iteration using a Newton-Raphson line
search to maximize the objective function. We incorporate
a positivity constraint by using a bent-line search as we
describe in [3].

Here we report on application of this algorithm, using
the PC cluster, to data collected in 3D mode using the
CTI ECAT HR+ scanner. The data from the HR+ scan-
ner was a standard 3D dataset rebinned with a span of 9
and a maximum ring difference of 22. There were 239 sino-
grams each of size 288 (elements) by 144 (angles) giving

Beowulf Cluster

Remote Internet2

User

Master
Node

100 Mbs Switch

Fig. 1. Architecture of the PC cluster.

a total emission sinogram size of 40 MB. Attenuation cor-
rection requires a second sinogram of the same size, thus
the total data for a single frame is on the order of 80MB
in size. These file sizes are important when considering
the impact of reconstruction via a browser over an inter-
net connection. The other files that are required are ei-
ther small (such as the factored normalization file) or can
be stored on the cluster (such as the forward projection
matrix, P). Voxel sizes used in our reconstructions were
2.25mm x 2.25mm x 2.42mm for the HR+ and images were
of size 128 x 128 x 63 so that the image is of size 4MB
when saved as 4-byte real values. Thus, transfer times for
the reconstructed images back to a remote user are small
compared to those for sending the data to the cluster.

B. Beowulf Clusters and Code Parallelization
B.1 System setup

We built a Beowulf cluster consisting of one master node
and eight worker nodes. FEach worker node is a rack-
mounted dual processor Intel Pentium IIT 933 MHz sys-
tem with 512MB of RAM and 20GB of disk space. The
master node is also a rackmounted dual processor Intel
Pentium IIT 933 MHz system, but has 1GB of RAM and a
36GB hard drive. The master node has dual network inter-
face cards, allowing the cluster to have a private network
but still be accessible from the Internet. The configura-
tion of the cluster is shown in Fig 1. We configured the
system with the Linux operating system (RedHat v. 7.0;
Linux kernel version 2.4). We also installed the Local Area
Multicomputing (LAM) 6.5.1 version of the Message Pass-
ing Interface (MPI) software onto each node. MPI is an
open standard for communicating data between computer
processes; LAM is an implementation for use on clustered
computers and provides a programming environment that
is portable to other architectures.

B.2 Code parallelization

Analysis of our algorithm’s performance on a single com-
puter revealed that two operations dominated computa-
tion: the back projection of the sinograms into image
space and the forward projection of the image into sino-
gram space. Computation of the gradient in (6) requires a
forward and back projection; a second forward projection

is required prior to doing the line search to compute (™
in (4). We distributed the processing of these key oper-
ations across the cluster. Ignoring communication costs,
we are able to achieve roughly a factor-0.75 - N speed-up
on the forward and backward projections using N nodes
of the cluster. This number is less than N because the
workload is not perfectly balanced across the processors,
but still represents a dramatic improvement in computing
time. Were we to communicate the sinogram data during
the iterations of the algorithm, the high cost of passing
these results among the nodes would rapidly consume the
gain in performance. Fortunately, we can decompose our
problem such that the slave nodes never need to receive or
transmit sinogram data once the iterations have begun.

The forward and back projection operators are both lin-
ear transformations, and represented as a factored system
matrix as described above. During back projection, each
element of the image may be a function of several elements
of the sinograms. Each sinogram is transformed by the sys-
tem matrix to contribute to the reconstructed image. We
can partition this transformation based on arbitrary sets
of sinograms, apply the system matrix separately to these
sinograms to obtain their contribution to the reconstructed
image, and then sum these partial results to obtain the en-
tire transformation. In our distributed implementation, we
assign each node a range of sinograms for which it is re-
sponsible. The node keeps updated versions of the data for
these sinograms, and backprojects them into imagespace
when requested by the head node. These results are sent
back to the head node, where they are combined into a
single image.

The forward projection problem can also be decomposed
into functions producing individual sinograms; however,
each operation will still require the full image that is being
forward projected. Fortunately, the communication cost of
transmitting images to each node is relatively small com-
pared to the cost of transmitting sinogram data or per-
forming the reconstruction computation. During forward
projection, the head node broadcasts the image to each
node; the nodes are responsible for producing the same
sinograms that they will use during backprojection. Dur-
ing the iterations, the nodes generate any sinogram data
they will need, and thus do not need to communicate their
sinogram data to other nodes of the cluster. We distributed
some additional computation to the nodes to eliminate the
need to send any sinogram data to any other nodes; the
effects of this distributed processing are small compared to
the gains from distributing the projection operations.

A second layer of parallelization is used on each node,
as each has dual processors. The projection problems are
again decomposed based on sinograms, and two threads
are spawned on each node to handle the projections. In
this case, we achieve better load balancing as the node
can dynamically assign sinograms to the threads as soon
as they have finished processing. The computation of the
image prior (3) is also multi-threaded on the head node.
This operation may be distributed to the cluster in future
work; however, this would require broadcasting of image

SERVER

javaservles

CLIENT

java applet

1 User Inputs DaiaFiles
& Pararrelers

]2 Conpression

3. Reconsiruction Request (Corrpressed Data)

4: Decorrpression E

5 Reconstruction E

Sarts 6. Progress Report

7: Reconstructed | mage

Fig. 2. Architecture of the web interface to the 3D PET reconstruc-
tion program. The user supplies the data files and parameters
to the java applet. The applet compresses the data files and
submits a reconstruction request to the server. The server de-
compresses the data files, starts the reconstruction and sends the
reconstruction progress to the applet, which displays it in the
client browser. When the reconstruction finishes the server sends
the reconstructed image to the applet which displays the results
in the client browser.

vectors and the cost of communication may outweigh the
benefit of distributed processing.

The projection routines are also used during initializa-
tion, so improvements to them will reduce start-up costs.
Additionally, the geometry matrices used in projection can
be hundreds of megabytes in size, and are needed on each
node. These matrices are used repeatedly for a particular
scanner and voxel size, thus we store copies of these files
on the local hard drive. This reduces the network burden
further.

C. Java Browser-based Interface

We developed a Java based interface to the 3D MAP re-
construction program that allows users across the Internet
to run reconstructions on our Beowulf PC cluster. The
interface consists of two components, a client module and
a server module. Fig. 2 illustrates the architecture of the
interface.

The client module was implemented as a Java applet
and can run on standard web browsers. The user supplies
the data files (emission file, normalization file, etc) and
parameters (number of bed positions, number of frames,
etc) for the MAP reconstruction and submits a reconstruc-
tion request. The client module collects the parameters
and data files for the reconstruction and sends them to
the server. The server module was implemented as a Java
servlet. It receives the data from the client and starts the
reconstruction. Text messages describing the reconstruc-
tion progress are sent to the client. The applet displays
the reconstruction progress in the browser. When the re-
construction finishes the applet receives the reconstructed
images and statistics about the reconstruction process.

The data sizes used in 3D PET reconstructions are large.
The data size we used for HR+ reconstruction was 8OMB
per frame. To reduce transfer time the applet compresses

Speed Improvements with Cluster Size

——Ideal
~B- Startup
81— Iteration

Speed-up
o

Fig. 3. Speed increase to the iterative portion of reconstruction code
for different sized clusters.

the data files before sending the reconstruction request to
the server side. The compressed data is transferred over
the network and received by a servlet on the cluster. The
servlet decompresses the data before starting the MAP re-
construction.

D. Network Connections

To evaluate performance over Internet2, the PC-cluster
server was connected through a 100mb/s network to the
University of Southern California backbone to Internet2.
The client computer containing the data was similarly con-
nected through the UCLA computer network. The link be-
tween USC and UCLA is part of the California Research
and Education Network-2 (CalREN-2). CalREN-2 is a
high-performance advanced-services network with a min-
imum communication bandwidth of 622Mbs.

III. RESULTS

We performed reconstructions on our cluster using dif-
ferent numbers of nodes to assess the benefit of using dis-
tributed processing. Figure 3 shows the performance gains
achieved on both the initialization and the main loop of the
program for reconstruction of HR+ 3D data. The chart
show that we achieved better than N/2 increases in pro-
cessing speed, where N is the number of nodes in the clus-
ter, for up to 8 nodes. Our performance begins to flatten
with the 9th node, which reduced the iteration time of the
reconstructions by a factor of 4.36. This represents a signif-
icant performance gain over using a single dual-processor
machine. Figure 4 shows the key components of a recon-
struction iteration for the HR+ data as computed with dif-
ferent sized clusters. Forward and back projection clearly
dominate the computation time when the algorithm is per-
formed on a single node. As the number of nodes increases,
the times for these operations are greatly reduced. When
the ninth node is added to the cluster, the line search re-
quires almost as much time as the forward and back pro-
jection. This figure indicates that to achieve further gains
by adding more nodes we must either distribute additional
processing or perform better load balancing.

Additional overhead for data transfers over Internet2

Allocation of iteration time for different cluster sizes

300 +—

p— M other processing
| | Eimage communication |
M gradient
250 1| Oline search L
Oback projection

200 4+— W forward projection lag | |

— Eforward projection

L LEFEEE

Nodes

Seconds

Fig. 4. Usage of computing time in a single iteration of reconstruc-
tion. Forward projection lagtime is the difference between when
the head node finishes its portion of the forward projection and
when all nodes are finished; some of this time may be used by
the head node to perform additional computation.

were minimal. For example transfer of the combined trans-
mission and attenuation correction file (80MB) in uncom-
pressed format took 54 seconds. from UCLA to USC.
Typically we can achieve 50-75% compression using the
compression applet which will reduce the transfer time to
between 27 and 13.5 seconds. However, the time taken
to compress the two files is approximately 2 minutes on
a 450MHz UltraSPARC workstation, which exceeds the
transfer time required for the uncompressed file. For sys-
tems with slower Internet connections, the trade-off be-
tween compression and transfer times will be different and
use of compression will be appropriate. This preliminary
study demonstrates the feasibility of using remote PC-
clusters for image reconstruction , particularly for PET
sites with access to fast networks. Furthermore, the cluster
presents a relatively low-cost approach to achieving prac-
tical reconstruction times in 3D iterative PET reconstruc-
tion.

REFERENCES

[1] P. Kinahan, C. Michel, M. Defrise, D. Townsend, M. Sibomana,
M. Lonneux, D. Newport, and J. Luketich: Fast iterative image
reconstruction of 3D PET data, Proc. IEEE Nuclear Science
Symposium and Medical Imaging, pp. 1918-1922, 1996.

[2] Mumcuoglu E.U., Leahy R. M.,Cherry S.R. and Zhou Z.: Fast
gradient-based methods for Bayesian reconstruction of transmis-
sion and emission PET images. IEEE Trans. Med. Imag. 13,
(1994), 687-701

[3] J. Qi, R. M. Leahy, S. R. Cherry, A. Chatziioannou and T.
H. Farquhar: High resolution 3D Bayesian image reconstruction
using the microPET small-animal scanner. Phys. in Med. Biol.
43,1998, 1001-1013

[4] D. Becker and T. Sterling and D. Savarese and B. Fryxelland K.
Olson: Communication Overhead for Space Science Applications
on the Beowulf Parallel Workstation, Proc. High Performance
and Distributed Computing, 1995.

[5] St. Vollmar, M. Lercher, C. Knvss, C. Michel, K. Wienhard and
W.D. Heiss: BeeHive: Cluster Reconstruction of 3-D PET Data
in a Windows NT network using FORE, Proc. IEEE Med Imag
Conf, Lyons, Oct, 2000.

[6] C.Labbe, H. Zaidi, C. Morel, K. Thielemans: An object-oriented
library incorporating efficient projection/backprojection opera-
tors for volume reconstruction in 3D PET, Proc. 3D99, Egmond
aan Zee, Netherlands, pp 137-140, 1999.

